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ASYMPTOTIC SOLUTION OF THE PROBLEM OF HEAT TRANSFER

BETWEEN TWO PLATES AND A UNIFORM FLUID FLOW

UDC 532.5M. M. Alimov

For low Peclet numbers, analytic expressions are obtained for three highest terms of the asymptotic
expansion of the solution of the convective heat-transfer problem for a system consisting of two parallel
plates with identical lengths identical and constant surface temperatures and an infinite uniform fluid
flow with a low Prandtl number.
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Introduction. The assumption that a fluid flow with a low Peclet number (Pe) is uniform implies that the
Reynolds number is high and the Prandtl number is low. This case is seldom encountered in practice [1]. It occurs,
however, in analyzing the filter-soil freezing process. As was shown in [2], the problem of the equilibrium shape of
ice bodies formed around freezing columns in a plane filtration flow is solved in two stages. At the first stage, the
Boussinesq transform for the convective heat-conduction equation in the thawed zone is used. As a result, in the
complex hydrodynamic potential plane, there arises a heat-transfer problem for a system of parallel plates and a
uniform fluid flow. At the second stage, a matching problem is to be solved.

A numerical analysis of the overall problem for two columns showed [3] that, in a certain range of the govern-
ing parameters (Pe number and column power Q), the problem has three solutions. Accordingly, the quasistationary
process of increasing/decreasing the power Q with a fixed Pe displays a closing/opening hysteresis. To analytically
substantiate the hysteresis phenomenon by asymptotic methods for the case Pe� 1, it becomes necessary to take
into account the third term of the asymptotics.

A three-term asymptotics of the solution of the problem of heat transfer between a single plate and a uniform
fluid flow was obtained in [4], where an approach based on integral equations and the known spectral relation [5]
were used. However, there is no such a spectral relation for two parallel plates. This is the reason for constructing
the asymptotics by matching asymptotic expansions [6].

1. Formulation of the Problem. We assume that the plates of identical lengths with identical and
constant surface temperatures are located symmetrically about the x and y axes, being oriented along the x axis
(Fig. 1a). The incoming stream is also parallel to the x axis. In the dimensionless form, the steady-state convective
heat transfer between such plates and an infinite fluid flow is described by the following system of equations [7]:

2 Pe
∂Θ
∂x

= ∆Θ, z ∈ Dz, Θ = 0, z ∈ Γ, Θ = 1, |z| → ∞,

∂Θ
∂y

= 0, y = 0, Θ(x,−y) = Θ(x, y), z ∈ Dz.

(1.1)

Here Dz is the upper half of the physical plane for the variable z = x + iy with the plate Γ cut off, Θ(x, y) is
the dimensionless temperature distribution function, and Pe is the Peclet number calculated using half of the plate
length as the length scale. The dashed line in Fig. 1a shows an auxiliary cut Λ formed by the part of the y axis
above the plate. This cut will be further used to guarantee uniqueness of the auxiliary functions in the domain
Dz ∪ Λ if their uniqueness in Dz is lacking. The point F is the origin. The points C, B, E, B′, and C ′ lie on the
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Fig. 1. Upper half of the physical plane z (a) and the plane of the auxiliary variable u (b).

plate and correspond to z = ih, 1 + ih, ih, −1 + ih, and ih (h is half of the dimensionless distance between the
plates). Although the points C, E, and C ′ correspond to one value of z, they should be distinguished: if we denote
the upper and lower banks of the cut Γ as Γ+ and Γ− and the right and left banks of the cut Λ as Λ+ and Λ−, then
we obtain E ∈ Γ−, C ∈ Γ+ ∩ Λ+, and C ′ ∈ Γ+ ∩ Λ−. Formally, the last condition in system (1.1) is a redundant
one for solving the problem in the domain Dz; nevertheless, it illustrates how this solution extends into the entire
z plane.

By means of the transform Θ(x, y) = T (x, y) exp (Pex), problem (1.1) can be reduced to the following
problem for the function T (x, y):

∆T = Pe2 T, z ∈ Dz, T = 0, z ∈ Γ, T = e−Pe x, |z| → ∞,

∂T

∂y
= 0, y = 0, T (x,−y) = T (x, y), z ∈ Dz.

(1.2)

If the boundary condition for Γ [2] is not satisfied, it is possible to represent the solution of this problem as the
integral boundary operator

T (x, y) = e−Pe x− 1
2π

1∫
−1

µ(x′)
∑
n=±1

K0

(
Pe
√

(x− x′)2 + (y − nh)2
)
dx′, (1.3)

where µ(x) = ∂T/∂y
∣∣∣
Γ+
− ∂T/∂y

∣∣∣
Γ−

is the density of the sources distributed along the contours Γ.
Formally, the integral boundary equation can be obtained using the boundary condition on the contour Γ

from system (1.2). The solution of this equation ultimately defines the form of the function T (x, y) and, hence,
that of the function Θ(x, y). Accordingly, using the formulas

q =

1∫
−1

µ(x) dx, Q =

1∫
−1

ePe x µ(x) dx (1.4)

we can find the total intensity of the sources (q) and the total heat flux to each plate (Q).
For an arbitrary Pe number, the integral boundary equation can be solved only numerically; however, for

Pe = ε � 1, it becomes possible to perform an asymptotic analysis of its solution. In this case, the density of the
sources µ(x) and the function T (x, y) can be represented as

µ(x) = µ,0(x) + εµ,1(x) + ε2µ,2(x) +O(ε3); (1.5)

T (x, y) = T,0(x, y) + εT,1(x, y) + ε2T,2(x, y) +O(ε3). (1.6)

Here, the subscripts are also used to denote various constants and special functions; for this reason, in writing terms
of the asymptotic expansion, we use commas placed before the subscripts.

Strictly speaking, the asymptotic expansions (1.5) and (1.6) should contain terms of the form εα(ln ε)β [5],
i.e., the expansion coefficients µ,i and T,i also depend on ln ε. Nevertheless, this dependence is weak and does not
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change the asymptotic behavior of the expansions. For this reason, it is reasonable to use relations (1.5) and (1.6)
to simplify subsequent manipulations.

In accordance with the matching method for asymptotic expansions [6], we seek solutions of two types:
the solution in the vicinity of the plates and the solution at infinity; the lacking conditions for their complete
determination will be sought by matching. It should be noted that the order of the differential equation changes in
the vicinity of infinity. The corresponding asymptotic expansion is called the boundary-layer or internal expansion.
To obtain it, we can use the generic form of solution (1.3) of a more general problem. The regular or external
expansion can be obtained by formally decomposing problem (1.2) with respect to the small parameter ε for
|z| ∼ 1.

2. Internal (Boundary-Layer) Asymptotic Expansion. We choose the coordinates X = εx and
Y = εy as the boundary-layer coordinates. We perform matching along the real axis; for this reason, only values
of T for Y = 0 are needed. In view of this, from (1.3), we obtain

π(e−X −T
∣∣∣
Y=0

) =

ε∫
−ε

µ
(X ′
ε

)
K0

(√
(X −X ′)2 + ε2h2

) dX ′
ε
. (2.1)

We introduce three first moments for the integrand µ(x):

mi =

1∫
−1

xiµ(x) dx, i = 0, 1, 2.

The following asymptotic expansion for the Bessel function K0 in expression (2.1) is possible in the vicinity of
x ∼ ∞ such that X ∼ 1, X ′ ∼ ε, and h ∼ 1:

K0

(√
(X −X ′)2 + ε2h2

)
= K0(X) +K ′0(X)(−X ′ + ε2h2/(2X)) +K ′′0 (X)X ′2/2 +O(ε3).

Substituting this expansion into formula (2.1), with accuracy to O(ε3), we find the expansion of the following form:

e−X −T
∣∣∣
Y=0
≈ m0

π
K0

(
X)− ε m1

π
K ′0(X) +

ε2

2π

[
m0h

2 K
′
0(X)
X

+m2K
′′
0 (X)

]
. (2.2)

Note that the asymptotic representation (1.5) of the function µ(x) yields similar representations of mi

(i = 0, 1, 2):

m0 = m0,0 + εm0,1 + ε2m0,2 +O(ε3), m1 = m1,0 + εm1,1 +O(ε2), m2 = m2,0 +O(ε).

Here, mi,k are yet indeterminate constants of the order of unity; it follows from expansion (2.2) that lower accuracy
is sufficient to find higher-order moments.

3. Matching of the Regular Asymptotic and Boundary-Layer Expansions. Formally, the external
(regular) expansion is expansion (1.6). After substituting it into problem (1.2) without the boundary condition at
infinity, we obtain the problem

∆T,i = 0, z ∈ Dz, T,i = 0, z ∈ Γ,

∂T,i
∂y

= 0, y = 0, T,i(x,−y) = T,i(x, y), z ∈ Dz

(3.1)

for T,0(x, y) and T,1(x, y) and the problem

∆T,2 = T,0(x, y), z ∈ Dz, T,2 = 0, z ∈ Γ,

∂T,2
∂y

= 0, y = 0, T,2(x,−y) = T,2(x, y), z ∈ Dz

(3.2)

for T,0(x, y). These problems are not closed since each of them contains no boundary condition at infinity. To
derive these problems, we match the external expansion (1.6) with the internal one (2.2) along the real axis. This
means that the function T

∣∣∣
Y=0

defined by expression (2.2) for X → 0 should have a structure similar to that

of solution (1.6) of problems (3.1) and (3.2) for y = 0 and x → ∞ [6]. It follows from the definition of the
boundary-layer coordinates that it is possible to let X tend to zero as x→∞ by representing, e.g., X as X ∼

√
ε.
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We substitute X = εx into expression (2.2) and then, using the asymptotic-expansion formulas for the
function K0 and its derivatives with respect to the small argument [8], we decompose the resultant expression with
respect to small ε, retaining three highest terms of the asymptotics:

T
∣∣∣ Y=0,
X=εx

≈ 1 +
m0

π

[
ρ(x)

(
1 + ε2 x

2

4

)
− ε2 x

2

4

]
− εx+ ε

m1

π

[
ε
x

4
− ε ρ(x)x

2
− 1
εx

]
+ ε2 x

2

2
+
ε2

2π

{
m0h

2
[ρ(x)

2
+

1
ε2x2

− 1
4

]
+m2

[ρ(x)
2
− 1
ε2x2

+
1
4

]}
+O(ε3). (3.3)

Here ρ(x) = ln (εx/2) + γ and γ ≈ 0.53 is the Euler constant. Separating terms of different orders in ε in (3.3) and
using the notation mi,k, we obtain the following conditions at infinity, y = 0 and x→∞, for T,i(x, y):

T,0(x, y)
∣∣∣
y=0, x→∞

= 1 +
m0,0

π
ρ(x)− m1,0

π
x−1 +

m0,0h
2 −m2,0

2π
x−2 +O(x−3),

T,1(x, y)
∣∣∣
y=0, x→∞

= −x+
m0,1

π
ρ(x)− m1,1

π
x−1 +O(x−2), (3.4)

T,2(x, y)
∣∣∣
y=0, x→∞

= x2
[m0,0

4π
ρ(x) +

1
2
− m0,0

4π

]
+ x
[m1,0

4π
− m1,0

2π
ρ(x)

]
+
[4m0,2 +m0,0h

2 +m2,0

4π
ρ(x)− m0,0h

2 −m2,0

8π

]
+O(x−1).

It should be noted that terms of orders ε and ε2 in the boundary-layer expansion (2.2) contribute to the
major term of the expansion with respect to ε [in expression (3.3), these are components that contain x−1 and x−2,
respectively]. The remainder term of expansion (2.2) also contributes to the major term of the regular expansion,
which is emphasized by the symbol “≈” in relation (3.3). In addition, these terms are small in the expansion
with respect to small 1/x; for this reason, we use the sign of strict equality in relations (3.4); the corresponding
contribution is included into the remainder terms.

The singular part of the first relation in (3.4) is the boundary-layer condition at infinity that closes prob-
lem (3.1) for T,0(x, y). This condition defines the structure of the function T,0(x, y); as a result, three regular terms
of the relation (of the orders of unity, x−1, and x−2) yield three conditions for determining mi,0.

Similarly, from the boundary condition at infinity for the function T,1(x, y) [the second relation in (3.4)], we
can identify the singular part that, together with (3.1), defines the structure of the function T,1(x, y). Then, two
regular terms of the expansion can be used to obtain two conditions for mi,1. In a similar manner, we can find the
structure of the function T,2(x, y).

4. Determination of the Major and Linear Terms of the Asymptotics. According to Sec. 3,
the problem for the function T,0(x, y) can be written as system (3.1) with the singular part (3.4). Its solution is
constructed using the method of singular points [9] with the use of elliptic functions; to represent these functions,
an auxiliary plane u = ξ + iη is needed. The domain Dz in the physical plane corresponds to the rectangle Du in
the u plane, shown in Fig. 1b. The points A′ and A correspond to the values u = 0 and 1 and the points F and E

correspond to the values u = 1/2 and (1 + iτ)/2, respectively. The lateral sides of the rectangle Du correspond
to the auxiliary cut Λ in the z plane. Conformal mapping of the u plane onto the z plane is performed by the
function [10]

z(u) = −h
π

ϑ′1
ϑ1

(u; iτ), (4.1)

where ϑ1(u; iτ) is the theta-function. The auxiliary parameter τ (Im τ = 0) is determined by the value of h only.
The analogy with the classical problem of electrical capacity of a plane capacitor allows us to argue that

the dependence h(τ) is monotonic. A particular form of this dependence can be found as follows [10]. First, we
consecutively find the values of α, s, and β:

α(τ) =
ϑ2

2

ϑ2
3

(0; iτ), s(τ) =
1
α

√
K(α2)− E(α2)

K(α2)
, β(τ) =

F (arcsin s;α2)
2K(α2)

.

Here K(α2) and E(α2) are the elliptic integrals of the first and second kind; F (arcsin s;α2) is the incomplete elliptic
integral of the first kind. The value of h can be calculated by the formula

h(τ) = π(ϑ4/ϑ
′
4)(β; iτ). (4.2)

388



0 0.25 0.50 0.75 1.00

2

4

6
h

t

Fig. 2. The value of h as a function of the auxiliary parameter τ .

For τ � 1, or, more exactly, for τ < 0.1, these formulas cannot be used, because the value of α is close to unity and
the calculations become insufficiently precise (for instance, when performed using the MAPLE packet). In the case
considered, however, it suffices to estimate h ≈ τ , for instance, from physical considerations. Another numerical
procedure applicable to the whole range of τ is given in [3]. The dependence h(τ) is shown in Fig. 2.

The harmonic function T,0(x, y) can be represented as

T,0(x, y) = m0,0[F (z) + F (z̄)]/(2π), (4.3)

where F (z) is an analytical function of the variable z such that ImF (z) = 0 at y = 0. Using expression (4.1), we
can pass from the variable z to the variable u. We denote the corresponding function as f(u): F [z(u)] = f(u). We
also introduce the notation Fu(z) and Fuu(z): Fu[z(u)] = f ′(u) and Fuu[z(u)] = f ′′(u).

4.1. Construction and Analysis of the Function f(u). The infinity x→∞ in the physical plane corresponds
to the point u = 1. We consider a vicinity of this point u = 1− δ, where δ � 1. The quantity δ � 1 can be related
to x � 1 using formula (4.1) for the mapping z(u). Using the Taylor expansion of the theta functions from (4.1),
we obtain

x
∣∣∣
u=1−δ, δ�1

=
h

πδ

[
1 +

δ2

3
ϑ′′′1
ϑ′1

(0; iτ)
]

+O(δ3). (4.4)

This formula can be inverted to give

δ
∣∣∣
u=x�1

=
h

πx

[
1 +

1
3

( h

πx

)2ϑ′′′1
ϑ′1

(0; iτ)
]

+O(x−5). (4.5)

Passing to the function f(u) in problem (3.1) with the singular part (3.4), with allowance for (4.4), we obtain the
following boundary-value problem for the function f ′(u):

Re f ′(u) ≈ δ−1, u = 1− δ, Re f ′(u) = 0, u ∈ C ′C,

Im f ′(u) = 0, u ∈ A′A, f ′(u) = f ′(u+ 1), u ∈ A′C ′.
(4.6)

From the singularities, we find the elliptic function f ′(u) and then f(u) [9]:

f ′(u) = − d

du
ln
ϑ1

ϑ4
(u; 2iτ), f(u) = − ln

ϑ1

ϑ4
(u; 2iτ). (4.7)

Using the results obtained, we can describe in detail the behavior of the function f(u) in the vicinity of the
point u = 1. We obtain

Re f(u)
∣∣∣
u=1−δ

= − ln
∣∣∣δ ϑ′1
ϑ4

(0; 2iτ)
∣∣∣+

δ2

2

[ϑ′′′4
ϑ′4

(0; 2iτ)− 1
3
ϑ′′′1
ϑ′1

(0; 2iτ)
]

+O(δ4),

Re f ′(u)
∣∣∣
u=1−δ

= δ−1 − δ
[ϑ′′′4
ϑ′4

(0; 2iτ)− 1
3
ϑ′′′1
ϑ′1

(0; 2iτ)
]

+O(δ3),
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Re f ′′(u)
∣∣∣
u=1−δ

= δ−2 +
[ϑ′′′4
ϑ′4

(0; 2iτ)− 1
3
ϑ′′′1
ϑ′1

(0; 2iτ)
]

+O(δ2).

Using the dependence δ(x) (4.5) in these relations, we examine the behavior of the functions F (z), Fu(z), and
Fuu(z) at infinity, z = x→∞:

ReF (z) = lnx+ C0 + C2x
−2 +O(x−4),

ReFu(z) = (π/h)(x− C1/x) +O(x−3), ReFuu(z) = (π2/h2)(x2 + 2C2) +O(x−2).
(4.8)

Here Ci is a function of the parameter τ :

C0 = ln
∣∣∣ π

h(τ)
ϑ4

ϑ′1
(0; 2iτ)

∣∣∣, C1 =
h2(τ)
3π2

4∑
k=2

[
ak

ϑ′′k
ϑk

(0; 2iτ) +
ϑ′′k
ϑk

(0; iτ)
]
,

C2 =
h2(τ)
3π2

4∑
k=2

[ak
2
ϑ′′k
ϑk

(0; 2iτ)− ϑ′′k
ϑk

(0; iτ)
]
, a2 = a3 = −1, a4 = 2.

Finally, let us write out the problem for the function f ′′(u). It follows from the system of Eqs. (4.6) for f ′(u)
that

Re f ′′(u) ≈ δ−2, u = 1− δ, Re f ′′(u) = 0, u ∈ C ′C,

Im f ′′(u) = 0, u ∈ A′A, f ′′(u) = f ′′(u+ 1), u ∈ A′C ′.

4.2. Construction of the Functions T,0(x, y) and T,1(x, y). Formulas (4.1), (4.3), and (4.7) determine the
form of the function T,0(x, y). From the first relation of (4.8), we can find the behavior of the function T,0(x, y) at
infinity z = x→∞:

T,0(x, y)
∣∣∣
y=0, x→∞

= m0,0(lnx+ C0 + C2x
−2)/π +O(x−4).

Comparing this expression with (3.4), we find the relation of mi,0 (i = 1, 2, 3) with ε and τ :

π/m0,0 = ln (2/ε)− γ + C0, m1,0 = 0, m2,0 = m0,0(h2 − 2C2). (4.9)

The problem for T,1(x, y) can be written as system (3.1) and a condition at infinity given by the singular
part of the second relation in (3.4). Note that the second singular component in the condition at infinity has the
same structure as the singular part of condition (3.4) for T,0(x, y). For this reason, there appear the component
m0,1π

−1f(u) in the function T,1(x, y) and the component of the form m0,1π
−1C0 in the term of the order of unity

in the expansion of T,1(x, y) at infinity. Simultaneously, the first singular component in the condition at infinity
provides no contribution of the order of unity to this expansion (see below). As a result, the regular term of the
second relation in (3.4) of the order of unity gives a condition of the form m0,1[ln (ε/2) + γ] = m0,1C0, which, by
virtue of the first relation in (4.9), is satisfied only if m0,1 = 0. Thus, there remains only the first component in the
singular part of the condition at infinity for T,1(x, y).

Comparing the problem for T,1(x, y) with problem (4.6) for the function f ′(u), we obtain

T,1(x, y) = −(h/π) ReFu(z).

Then, the second expression in (4.8) yields the expansion of T,1(x, y) at infinity:

T,1(x, y)
∣∣∣
y=0, x→∞

= −x+ C1x
−1 +O(x−3). (4.10)

Comparing the terms of order x−1 in relation (4.10) and the second relation of (3.4), we obtain m1,1 = −πC1.
Note, similarly to the case of a single plate [4], the function T,0 has even symmetry and the function T,1 has

odd symmetry with respect to the y axis.
5. Determination of the Third Term of the Asymptotics. We can simplify the boundary condition

for the function T,2 at infinity [the third relation of (3.4)] using the expressions found previously for mi,k. With
accuracy to O(x−1), we obtain

π

m0,0
T,2(x, y) ≈ x2 lnx

4
+
(
C0 − 1− π

m0,0

)x2

4
+
(m0,2

m0,0
+
h2 − C2

2

)(
ln
εx

2
+ γ
)
− C2

4
. (5.1)
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Fig. 3. Integration contours in the z plane used to calculate P∞ (a) andG∞ (b).

As in Sec. 4, the structure of the function T,2(x, y) as a solution of system (3.2), (5.1) is determined by
singular terms, namely, by the first three components in braces in condition (5.1). In this case, however, the
function T,2(x, y) is biharmonic and displays a more complex behavior at infinity.

We introduce the auxiliary functions P (z) and G(z)

P (z) =

z∫
0

F (z′) dz′, G(z) =
1
2

z∫
zE

P (z′) dz′ (5.2)

and analyze their behavior.
5.1. Analysis of the Auxiliary Functions. The function T (x, y) is directly related to the temperature distri-

bution; therefore, it is uniquely defined, together with its derivatives, everywhere in the domain Dz. Accordingly,
the functions T,i(x, y) (i = 1, 2, 3) and their derivatives are also uniquely defined. Meanwhile, the function F (z)
is nonunique in Dz: on passing around the cut Γ along each closed contour, the imaginary part of this function
increases by π. If we draw an auxiliary cut Λ (see Fig. 1a), on which the function ImF (z) has a jump, then the
function F (z) becomes uniquely defined in the domain Dz ∪ Λ. It follows from the definition of the functions P (z)
and G(z) that they are nonunique in the domain Dz.

Based on the above considerations, it can be argued that the function F (z) in the domain Dz ∪ Λ satisfies
the boundary conditions

ReF (z) = 0, z ∈ Γ, ImF (z) = 0, y = 0, ImF (z) = ±H(y − h)π/2, x = ±0

(H is the Heaviside function and x = ±0 is the approaching to the y axis from the right and from the left) and the
condition at infinity |z| → ∞

Re F (z)||z|→∞ = ln z + C0 + C2z
−2 +O(|z|−4),

which follows from (4.8) by virtue of the fact that 0 6 arg z 6 π/2 and the major branch of the logarithm is used.
As follows from the definition of the function P (z), it satisfies, in the domain Dz∪Λ, the boundary conditions

ReP (z) = 0, z ∈ Γ, ImP (z) = 0, y = 0,

ReP (z) = ∓(y − h)H(y − h)π/2, x = ±0
(5.3)

and the condition at infinity |z| → ∞

P (z)
∣∣∣
|z|→∞

= z ln z + (C0 − 1)z + P∞ − C2z
−1 +O(z−3). (5.4)

Here P∞ is the term of the expansion of the order of unity. Let us find its form.
In the z plane, we draw a circumference of a large radius R � 1 whose center lies at the origin (Fig. 3a).

We denote the points of its interaction with the coordinate axes as A1 and A2. From the definition of the function
P (z), we have

ReP (z)
∣∣∣
z=R

= Re
∫
FA1

F (z′) dz′.
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Applying the Cauchy theorem [11] to the analytical function F (z), we change the integration path FA1 to
FEBCA2A1. As a result, we obtain the relation

ReP (z)
∣∣∣
z=R

= R lnR+ (C0 − 1)R+ πh/2− C2/R+O(R−3).

Comparing this relation with (5.4), we obtain the expression P∞(τ) = πh/2. Here and below, in a similar situation
for G(z), we use the condition at infinity |z| → ∞ and not only z = x→∞.

In compliance with (5.3) and (5.4) and the definition of the function G(z), the latter satisfies, in the domain
Dz ∪ Λ, the boundary conditions

ReG(z) = 0, z ∈ Γ, ImG(z) = 0, y = 0,

ImG(z) = ±[h2 − 2C2 − (y − h)2]H(y − h)π/8, x = ±0
(5.5)

and the condition at infinity |z| → ∞

G(z)
∣∣∣
|z|→∞

=
z2

4
ln z +

(
C0 −

3
2

)z2

4
+
πh

4
z − C2

2
ln z +G∞ +O(|z|−2). (5.6)

In deriving the last condition in (5.5), we used the value of ImG(zC) = (h2 − 2C2)π/8 calculated using the last
expression in (4.9). In (5.6), G∞ is the expansion term of the order of unity, which is ultimately determined by
formulas (5.2) and the known form of the function F (z). Obviously, G∞ depends on τ only. Let us find this
dependence.

In the z plane, we draw circumferences of large radius R� 1 and small radius r � 1 whose centers coincide
with the origin. We denote the points of intersection of the first circumference with the coordinate axes x and y

as A1 and A2, and those of the second circumference as F1 and F2, respectively (Fig. 3b). Applying the Cauchy
theorem [11] to the analytical function G(z)/z and integration contour Σ = A1F1F2EBCA2A1, we obtain∮

Σ

G(z)
z

dz = 0.

After integration and subsequent transition to the limit R→∞, r → 0, we obtain

G∞ =
J1

2
− J2

2π
− h2

2
, J1 =

uE∫
uF

f ′(u)
(y2

2
− hy

)
y=Im z(u)

du,

J2 =

uC∫
uE

Im f ′(u)
[x2 − h2

2
ln (x2 + h2)− 3x2 + h2

2
+ 2hx arctan

x

h

]
x=Re z(u)

du.

Here J1 and J2 are real-valued quantities.
By virtue of the Cauchy–Riemann relations [11], the jump of the function G(z) of the form (5.5) across the

cut Λ results in the jump of the derivative of the function ReG(z) in the x direction: ∂ ReG(z)/∂x
∣∣∣
Λ±

= ∓(y−h)π/4.

5.2. Construction of the Function T,2(x, y). We seek the function T,2(x, y) in the form

πT,2(x, y)/m0,0 = (z + z̄)[P (z) + P (z̄)]/8− ReG(z) + Re Ω(z), (5.7)

where Ω(z) is a function unknown at the moment. Applying the Laplace operator to expression (5.7), we find that
the Poisson equation in system (3.2) is satisfied by virtue of the first term in (5.7). The second term guarantees the
required form of the highest singular term of the expansion of T,2(x, y) at infinity (5.1) — the term of order x2 lnx;
correspondingly, it compensates for the jumps of the derivative of the first term in (5.7) in the x direction across
the cut Λ.

We write the problem for the analytical function Ω(z). From system (3.2) and expressions (5.3) and (5.5),
we find the boundary conditions

Re Ω(z) = 0, z ∈ Γ, Im Ω(z) = 0, y = 0, Im Ω(z) = 0, x = 0,
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Fig. 4. Comparison of the asymptotic dependence Q(τ) with the numerical
data obtained by the calculation procedure of [3] for Pe = 0.5: the curve show
the numerical calculations by the procedure of [3]; points 1 and 2 refer to the
calculations by the asymptotic formula (6.1) in the zero-order approximation
and in the second-order approximation, respectively.

and from formulas (5.1), (5.4), and (5.6), we find the condition for z = x→∞

Re Ω(z) =
( 2π
m0,0

− 1
)x2

8
+

2m0,2 +m2,0

2m0,0

(
ln
εx

2
+ γ
)

+
C2

2

(
ln
ε

2
+ γ +

1
2

)
+G∞, (5.8)

where, for simplicity, we used relations (4.9). A comparison of this problem with the problem for the functions F (z)
and Fuu(z) show that the function Ω(z) can be represented as a linear combination of these functions:

Ω(z) =
( 2π
m0,0

− 1
) h2

8π2
Fuu(z) +

2m0,2 +m2,0

2m0,0
F (z).

By virtue of conditions (4.8), the expansion Re Ω(z) at infinity has the form

Re Ω(z)
∣∣∣
z=x→∞

=
( 2π
m0,0

− 1
)[x2

8
+
C2

4

]
+

2m0,2 +m2,0

2m0,0
[lnx+ C0] +O(x−2).

Comparing the latter expression with (5.8), we obtain the following relation between m0,2 and G∞(τ):(2m0,2 +m2,0

2m0,0
+
C2

2

)(
ln
ε

2
+ γ
)

+G∞ =
( π

m0,0
− 1
)C2

2
+

2m0,2 +m2,0

2m0,0
C0.

Finally, using (4.9), we find the last unknown moment of the function µ(x):

m0,2 = (2G∞ + C2(1 + C0))m2
0,0/(2π)− h2m0,0/2.

6. Analysis of Results. We give the final form of the terms of the asymptotic expansion (1.6) of the
function T (x, y) in terms of the analytical functions z(u) and f(u) and moments mi,j :

T,0(x, y) = m0,0
Re f(u)

π
, T,1(x, y) = −h Re f ′(u)

π
, T,2(x, y) = m0,0

Rew(u)− J1

2π
.

Here

w(u) = f(u)
[
|z2(u)|+ z2(u)

2

]
−

u∫
1/2

[
z(u) z(ζ) +

z2(ζ)
2

]
f ′(ζ) dζ +

( 2π
m0,0

− 1
) h2

4π2
f ′′(u) +

2m0,2 +m2,0

m0,0
f(u).

Using formula (1.4), we can calculate the total heat flux to the plate Q as a function of Pe and τ . With only
nonzero moments mi,j retained, we have

Q = m0,0 + ε2(m1,1 +m0,2 +m2,0/2). (6.1)

To pass in this formula from the parameter τ to the parameter h, we can use relation (4.2).
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To check the validity of the formulas obtained for Pe = 0.5, we compared the data obtained by the asymptotic
dependence (6.1) with the dependence obtained by solving the integral boundary equation (1.4) numerically, using
the procedure of [3]. The results are plotted in Fig. 4. Although the Peclet number here is not very low here, the
allowance for the second term of the asymptotics appreciably improves the agreement with the calculations of [3]
up to τ = 0.7. The difference in the values of Q at large τ can be explained by the increase in h. In obtaining the
asymptotics, we assumed that h ∼ 1; in accordance with Fig. 2, we have h ≈ 3 for τ = 0.8. A similar comparison for
Pe = 0.1 yields almost a complete coincidence of the asymptotic dependence Q(τ) and the dependence calculated
by the procedure of [3] up to τ = 1 (for greater values of τ , no calculations were performed).

This work was partially supported by the Russian Foundation for Fundamental Research (Grant No. 01-01-
00068).
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